1.【解题思路】这是一个允许有重复元素的排列问题,分三步完成:
第一步,获得第1项冠军,有5种可能情况;
第二步,获得第2项冠军,有5种可能情况;
第三步,获得第3项冠军,有5种可能情况;
由乘法原理,获得冠军的可能情况的种数是:5*5*5=125
【参考答案】(B)
2.【解题思路】分类完成
以1为公差的由小到大排列的等差数列有18个;以2为公差的由小到大的等差数列有16个;以3为公差的由小到大的等差数列有14个;…;以9为公差的由小到大的等差数列有2个。
组成的等差数列总数为 180(个)
【参考答案】(D)
3. 【思路】在"已知取出的两件中有一件不合格品"的情况下,另一件有两种情况(1)是不合格品,即一件为合格品,一件为不合格品(2)为合格品,即两件都是合格品.对于(1),C(1,4)*(1,6)/C(2,10)=8/15;对于(2),C(2,4)/C(2,10)=2/15.提问实际上是求在这两种情况下,(1)的概率,则(2/15)/(8/15 2/15)=1/5。
4. 【思路】A=(等式两边求行列式的值,因为b1,b2,b3线性无关,所以其行列式的值不为零,等式两边正好约去,得-8)
5. 【思路】原题说他是好的答案,即包括了7次,8次,9次,10次的概率. 即 C(7 10)0.5^7x0.5^3 ......C(10 10)0.5^10, 即为11/64.
6. 【思路】a/q a a*q=k(k为正整数)
由此求得a=k/(1/q 1 q)
所求式=a^3,求最小值可见简化为求a的最小值.
对a求导,的驻点为q= 1,q=-1.
其中q=-1时a取极小值-k,从而有所求最小值为a=-k^3.(mba不要求证明最值)。
5、掷五枚硬币,已知至少出现两个正面,则正面恰好出现三个的概率。
【思路】可以有两种方法:
1. 用古典概型 样本点数为C(3,5),样本总数为C(2,5)C(3,5)C(4,5)C(5,5)(也就是说正面朝上为2,3,4,5个),相除就可以了;
7.假设事件A:至少出现两个正面;B:恰好出现三个正面。
A和B满足贝努力独立试验概型,出现正面的概率p=1/2
P(A)=1-(1/2)^5-(C5|1)*(1/2)*(1/2)^4=13/16
A包含B,P(AB)=P(B)=(C5|3)*(1/2)^3*(1/2)^2=5/16
所以:P(B|A)=P(AB)/P(A)=5/13。
以上便是答案与解析,希望对考生们有所帮助,可能有的考生数学基础较差,但是不要气馁,相信有付出就会有回报,又或者现在靠前辅导班学习,若想要了解更多关于考研真题的相关信息,欢迎咨询研究生在线老师。